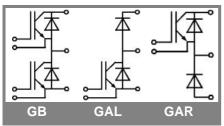


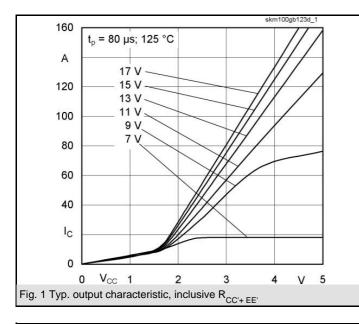
SEMITRANSTM 2

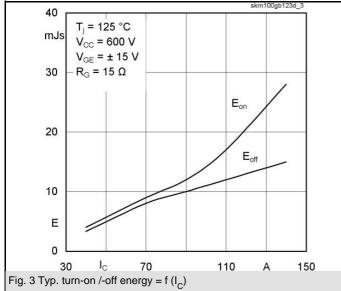
IGBT Modules

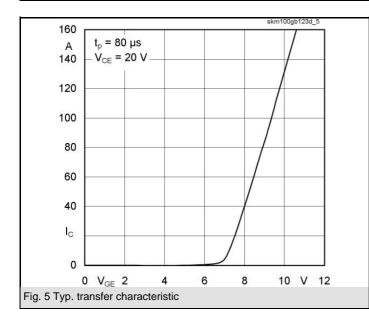

SKM 100GB123D SKM 100GAL123D SKM 100GAR123D

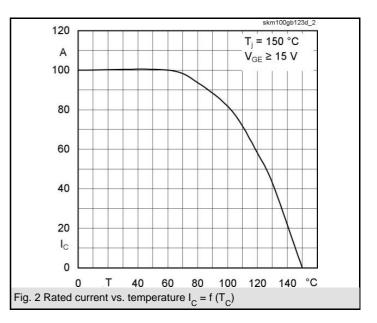
Features

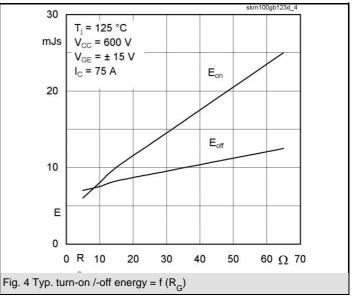
- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)

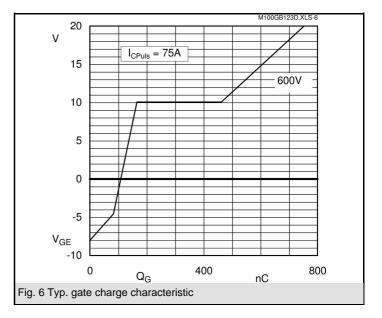

Typical Applications

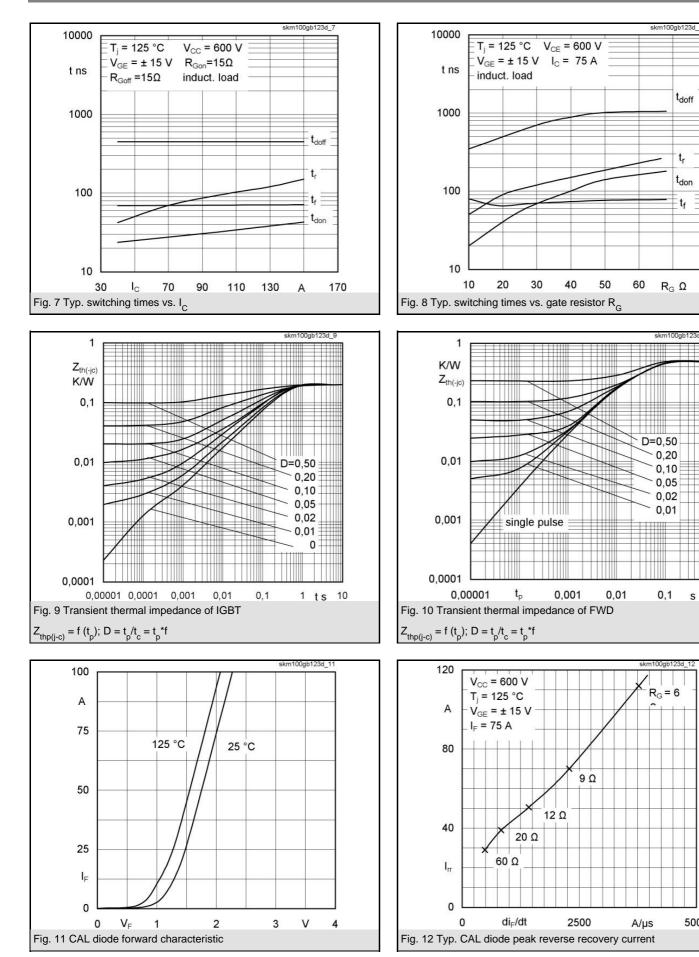

• Switching (not for linear use)




Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V _{CES}		1200	V						
I _C	T _c = 25 (80) °C	100 (90)	А						
I _{CRM}	$t_p = 1 \text{ ms}$	150	А						
V _{GES}		± 20	V						
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V _{isol}	AC, 1 min.	2500	V						
Inverse diode									
I _F	T _c = 25 (80) °C	95 (65)	А						
I _{FRM}	t _p = 1 ms	150	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	720	А						
Freewhee	Freewheeling diode								
I _F	T _c = 25 (80) °C	130 (90)	А						
I _{FRM}	t _p = 1 ms	200	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1100	А						

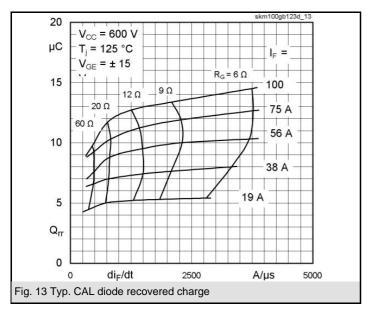

Characte	ristics I	_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$	4,5	5,5	6,5	V
ICES	V _{GE} = 0, V _{CE} = V _{CES} , T _j = 25 (125) °C		0,1	0,3	mA
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		14,6 (20)	18,6 (25,3)	mΩ
V _{CE(sat)}	I_{Cnom} = 75 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V
C _{ies}	under following conditions		5	6,6	nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,72	0,9	nF
C _{res}			0,38	0,5	nF
L _{CE}				30	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,75 (1)		mΩ
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 75 A		30	60	ns
t, Ö	$R_{Gon} = R_{Goff} = 15 \Omega, T_j = 125 °C$		70	140	ns
t _{d(off)}	V _{GE} = ± 15 V		450	600	ns
t _f `´			70	90	ns
E _{on} (E _{off})			10 (8)		mJ
Inverse d	liode				
V _F = V _{EC}	I _{Fnom} = 75 A; V _{GE} = 0 V; T _i = 25 (125) °C		2 (1,8)	2,5	V
V _(TO)	T _i = 125 () °C			1,2	V
r _T	T _i = 125 () °C		12	15	mΩ
I _{RRM}	I _{Fnom} = 75 A; T _j = 125 () °C		27 (40)		Α
Q _{rr}	di/dt = 800 A/µs		3 (10)		μC
E _{rr}	V _{GE} = 0 V		3		mJ
FWD					
V _F = V _{EC}	I _F = 100 A; V _{GE} = 0 V, T _i = 25 (125) °C		2 (1,8)	2,2	V
V _(TO)	T _i = 125 () °C			1,2	V
r _T	T _i = 125 () °C		8	11	mΩ
I _{RRM}	I _F = 100 A; T _i = 25 (125) °C		35 (50)		Α
Q _{rr}	di/dt = 1000 Å/µs		5 (14)		μC
Err	V _{GE} = 0 V				mJ
Thermal	characteristics				
R _{th(j-c)}	per IGBT			0,18	K/W
R _{th(j-c)D}	per Inverse Diode			0,5	K/W
R _{th(j-c)FD}	per FWD			0,36	K/W
R _{th(c-s)}	per module			0,05	K/W
Mechanic	cal data				
M	to heatsink M6	3		5	Nm
Mt	to terminals M5	2,5		5	Nm
w				160	g

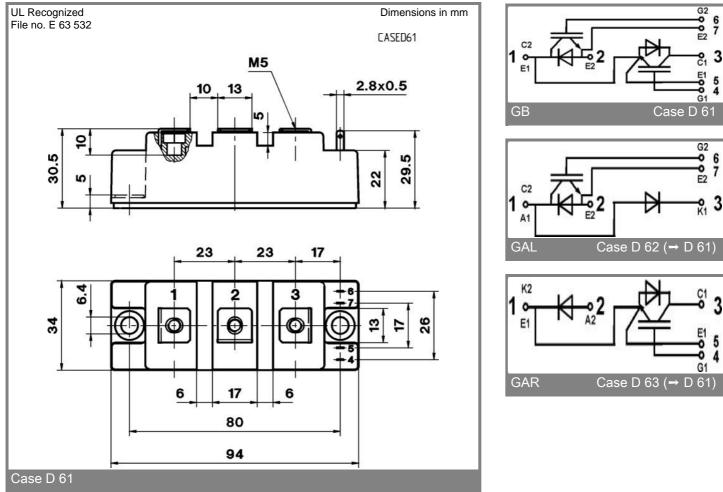




5000

t_{doff}


tr


t_{don}

tf

80

s 1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.